Image Analysis

Tim B. Dyrby
Rasmus R. Paulsen
DTU Compute
rapa@dtu.dk
http://www.compute.dtu.dk/courses/02502

Plenty of slides adapted from Thomas Moeslunds lectures

Lecture 4

Neighbourhood Processing

DTU

What can you do after today?

- Describe the difference between point processing and neighbourhood processing
- Compute a rank filtered image using the min, max, median, and difference rank filters
- Compute a mean filtered image
- Decide if median or average filtering should be used for noise removal
- Choose the appropriate image border handling based on a given input image
- Implement and apply template matching
- Compute the normalised cross correlation and explain why it should be used
- Apply given image filter kernels to images
- Use edge filters on images
- Describe finite difference approximation of image gradients including the magnitude and the direction
- Compute the magnitude of the gradient
- Compute edge detection in images

Point processing

Input
Output

- The value of the output pixel is only dependent on the value of one input pixel
- A global operation - changes all pixels

Point processing

- Grey level enhancement
- Process one pixel at a time independent of all other pixels
- For example, used to correct Brightness and Contrast

Neighbourhood processing

Input

Output

- Several pixels in the input has an effect on the output

Use of filtering

- Image processing
- Typically done before actual image analysis

Salt and pepper noise

- Pixel values that are very different from their neighbours
- Very bright or very dark spots
- Scratches in X-rays

What is that?

Salt and pepper noise

- Fake example
- Let us take a closer look at noise pixels

169	169	173	170	170	172	171	171	169
172	173	172	172	169	171	168	171	170
168	171	169	168	0	169	170	169	25
173	175	170	172	173	168	170	169	17
169	175	170	172	170	255	169	255	16
173	172	255	171	170	172	169	169	170
176	175	172	173	172	171	169	168	17
173	172	169	168	166	0	170	165	16
170	172	172	170	169	169	169	168	17
174	172	172	166	167	168	168	170	

They are all 0 or 255
Should we just remove all the 0's and 255's from the image?

What is so special about noise?

$172,169,171,168,0,169,172,173,168$

- What is the value of the pixel compared to the neighbours?
- Average of the neighbours
- 170
- Can we compare to the average?
- Difficult - should we remove all values bigger than average+1 ?
- It is difficult to detect noise!

Noise - go away!

- We cannot tell what pixels are noise
- One solution
- Set all pixels to the average or mean of the neighbours (and the pixel itself)
- Oh no!
- Problems!
- The noise "pollutes" the good pixels

Quiz 1: What is the median value of $[169,168,0,170,172,173,170,172,170] ?$

> A) 170
> B) 173
> C) 169
> D) 171
> E) 172

The median value

- The values are sorted from low to high
- The middle number is picked
- The median value

$$
169,168,0,170,172,173,170,172,170
$$

$$
0,168,169,170,170,170,172,172,173
$$

Noise away - the median filter

$$
\begin{aligned}
& 172,169,171,168,0,169,172,173,168 \\
& \hline 169,168,0,170,172,173,170,172,170 \\
& \hline
\end{aligned}
$$

- All pixels are set to the median of its neighbourhood (including the pixel itself)
- Noise pixels do not pollute good pixels

Noise removal - average filter

Scanned X-ray with salt and pepper noise

Noise removal - median filter

Image Filtering

- Creates a new filtered image
- Output pixel is computed based on a neighbourhood in the input image
- 3×3 neighbourhood
- Filter size 3×3
- Kernel size 3×3
- Mask size 3×3
- Larger filters often used
- Size
- 7×7
- Number of elements
- 49

Quiz 2: Median filter on image
A) 25
B) 90
C) 198
D) 86
E) 103

Answer:

$4,25,34,86,90,103,125,209,230$

The image is filtered with a 3×3 median filter. What is the result in the pixel marked with a circle?

66	222	102	230	199	147	166	175
204	148	19	241	99	15	187	47
110	140	61	125	62	60	165	94
232	37	31	125	103	90	115	160
46	218	47	86	25	209	139	199
67	159	61	230	34	4	76	21
37	89	106	94	240	11	190	237
35	131	13	28	244	43	48	198

Rank filters

169	169	173	170	170	172	171	171	169
172	173	172	172	169	171	168	171	170
168	171	169	168	0	169	170	169	255
173	175	170	172	173	168	170	169	171
169	175	170	172	170	255	169	255	169
173	172	255	171	170	172	169	169	170
176	175	172	173	172	171	169	168	173
173	172	169	168	166	0	170	165	166
170	172	172	170	169	169	169	168	172
174	172	172	166	167	168	168	170	172

- Based on sorting the pixel values in the neighbouring region as the median filter
- Minimum rank filter
- Darker image. Noise problems.
- Maximum rank filter
- Lighter image. Noise problems.
- Difference filter
- Enhances changes (edges)
$0) 168,169,170,170,170,172,172,173$

DTU Compute
Quiz 3: Rank filters on image
A) 3
(B) 84
C) 112
D) 73
E) 202

Answer:

minI:

The image is filtered with a 3×3 median filter (medI). The image (the original) is also filtered with a 5×5 minimum rank filter (minI). The final image is made by subtracting minI from medI. What is the result in the marked pixel?

67	159	61	230	34	4	76	21
37	89	106	94	240	11	190	237
35	131	13	28	244	43	48	198
222	102	230	199	147	166	175	124
148	19	241	99	15	187	47	111
140	61	125	62	60	165	94	114
37	31	125	103	90	115	160	78
218	47	86	25	209	139	199	130

Correlation

Muscles

Muscles
\square What is it?

- Two measurements
- Low correlation
- High correlation
- High correlation means that there is a relation between the values
- They look the same
- Correlation is a measure of similarity

Why do we need similarity?

- Image analysis is also about recognition of patterns
- Often an example pattern is used
- Often with some kind of meta data to apply to the targets
- We need something to tell us if there is a high match between our pattern and a part of the image

Correlation (1D)
Kernel

DTU

Correlation (1D)

Normalisation

- The sum of the kernel elements is used
- Keep the values in the same range as the input image

| $\frac{1}{4}$ | 1 | 2 |
| :--- | :--- | :--- |$|$| Sum |
| :--- |

$$
1 * 1+2 * 1+1 * 2=5
$$

Normalise!

Normalisation

$$
\begin{array}{|l|l|l|}
\hline h(x) & 1 & 2 \\
\hline
\end{array}
$$

- Normalisation factor
- Sum of kernel coefficients

$$
\sum_{x} h(x)=1+2+1
$$

Correlation on images

- The filter is now 2D

Kernel coefficients

| 1 1
 9 1
 1 1
 Kernel
 1 1
 1
 |
| :---: | :---: | :---: | :---: |

Input
Output

1	2	0	1	3	1
2	1	4	2	2	2
1	0	1	0	1	3
1	2	1	0	2	4
2	5	3	1	2	2
2	1	3	1	6	3

Correlation on images

$\frac{1}{9}$| 1 | 1 | 1 |
| :--- | :--- | :--- |
| 1 | 1 | 1 |
| 1 | 1 | 1 |

Input						Output					
1	2	0	1	3	1						
2	1	4	2	2	2		12	$\frac{11}{9}$			
1	0	1	0	1	3						
1	2	1	0	2	4						
2	5	3	1	2	2						
2	1	3	1	6	3						

Correlation on images

The mask is moved row by row

No values at the border!

Input

1	2	0	1	3	1
2	1	4	2	2	2
1	0	1	0	\rightarrow	3
1	2	1	0	2	4
2	5	3	1	2	2
2	1	3	1	6	3

Output

Quiz 4: Correlation on image - no normalisation
A) 4
B) 7
C) 16
D) 23
E) 25

1	2	0	1	3	1
2	1	4	2	2	2
1	0	1	0	1	3
1	2	1	0	2	4
2	5	3	1	2	2
2	1	3	1	6	3

Quiz 5: Correlation on image 2 - no normalisation
A) 0,10
B) 3,3
C) 6,2
D) 10,15
E) 11,32

-1	-2	-1
0	0	0
1	2	1

1	2	0	1	3	1
2	1	4	2	2	2
1	0	1	0	1	3
1	2	1	0	2	4
2	5	3	1	2	2
2	1	3	1	6	3

Mathematics of 2D Correlation

$$
g(x, y)=f(x, y) \circ h(x, y)
$$

1	2	0	1	3	1
2	1	4	2	2	2
1	0	1	0	1	3
1	2	1	0	2	4
2	5	3	1	2	2
2	1	3	1	6	3

Correlation operator

1	2	1
1	3	1
1	2	1
h		

Mathematics of 2D Correlation

$$
g(x, y)=\sum_{j=-R}^{R} \sum_{i=-R}^{R} h(i, j) \cdot f(x+i, y+j)
$$

Example $\mathrm{g}(2,1)$

Mathematics of 2D Correlation

$$
\begin{aligned}
& g(x, y)=\sum_{j=-R}^{R} \sum_{i=-R}^{R} h(i, j) \cdot f(x+i, y+j) \\
& g(x, y)=1 \cdot 2+2 \cdot 0+1 \cdot 1+1 \cdot 1+3 \cdot 4+1 \cdot 2+1 \cdot 0+2 \cdot 1+1 \cdot 0
\end{aligned}
$$

1	2	0	1	3	1
2	1	4	2	2	2
1	0	1	0	1	3
1	2	1	0	2	4
2	5	3	1	2	2
2	1	3	1	6	3

1	2	1
1	3	1
1	2	1
h		

DTU Compute

Correlation is a sliding dot-product between two vectors
$g(x, y)=\sum_{j=-R}^{R} \sum_{i=-R}^{R} h(i, j) \cdot f(x+i, y+j)$

1	2	0	1	3	1
2	1	4	2	2	2
1	0	1	0	1	3
1	2	1	0	2	4
2	5	3	1	2	2
2	1	3	1	6	3

1	2	1
1	3	1
1	2	1
h		

- In correlation we multiply h and f
- Kernel h and 3×3 patch in figure f are two high dimensional vectors:

$$
\begin{aligned}
& f(2,1)=[2,0,1,1,4,2,0,1,0] \\
& h=[1,2,1,1,3,1,1,2,1]
\end{aligned}
$$

- Multiplication is a dot product
- $h \cdot f=\|h\|\|f\| \cos \theta$

2D Kernel Normalisation

Normalisation factor:

$$
\begin{aligned}
& \sum_{x} \sum_{y} h(x, y) \\
& 1+2+1+1+3+1+1+2+1=13 \\
& \qquad \begin{array}{|l|l|l|}
\hline 1 & 2 & 1 \\
\hline 1 & 3 & 1 \\
\hline 1 & 2 & 1 \\
\hline
\end{array}
\end{aligned}
$$

Quiz 6: Template match on image

A) 50122
B) 123001
C) 11233
D) 2550
E) 90454

A template match is done on the image to the left with the template seen to the right. To find the best match the correlation is computed. What is the correlation in the marked pixel?

227	208	90	97	145	42	58	27			
245	62	212	145	120	154	233	245			
140	237	149	19	3	67	39	1			
35	89	140	14	86	167	211	198	66	232	37
38	50	234	135	41	176	137	208			
66	64	73	199	203	191	254	222	204	46	35
214	157	193	238	79	115	20	22			
65	121	192	33	135	21	113	102	110	67	222

Smoothing filters

- Also know as
- Smoothing kernel, Mean filter, Low pass filter, blurring
- The simplest filter:
- Spatial low pass filter
- Removes high frequencies

1	1	1
1	1	1
1	1	1

- Another mask:
- Gaussian filter

Why Gaussian?

1	2	1
2	4	2
1	2	1

Use of smoothing

Use of smoothing

- Large kernels smooth more
- Removes high frequency information
- Good at enhancing big structures

Quiz 7: Mean filter on image

A) 166
B) 113
C) 12
D) 51
E) 245

Answer:

$\frac{1}{9} \quad$| 1 | 1 | 1 |
| :--- | :--- | :--- |
| 1 | 1 | 1 |
| 1 | 1 | 1 |

$\left(608+x^{*} 1\right) / 9=86->x=166$

A 3×3 mean filter is applied to the image. The result in the marked pixel is 86 . What is the value of the pixel, where the value is missing?

227	208	90	97	145	42	58	27
245	62	212	145	120	154	233	245
140	237	149	19	3	67	39	1
35	89	140	14	86		211	198
38	50	234	135	41	176	137	208
66	64	73	199	203	191	254	222
214	157	193	238	79	115	20	22
65	121	192	33	135	21	113102	

Border handling

No values at the border!

Input					
1 2 0 1 3 1 2 1 4 2 2 2 1 0 1 0 1 3 1 2 1 0 2 4 2 5 3 1 2 2 2 1 3 1 6 3					

Border handling - extend the input Input

- Zero padding - what happens?

0	0	0	0	0	0	
0	1	2	0	1	3	1
0	2	1	4	2	2	2
0	1	0	1	0	1	3
0	1	2	1	0	2	4
	2	5	3	1	2	2
	2	1	3	1	6	3

- Zero is black - creates dark border around the image

Quiz 8: Correlation on image with zero padding
A) 5,8
B) 12,16
C) 13,3
D) 15,21
E) 17,12

1	2	0	1	3	1
2	1	4	2	2	2
1	0	1	0	1	3
1	2	1	0	2	4
2	5	3	1	2	2
2	1	3	1	6	3

Quiz 8: Correlation on image with zero padding
A) 5,8
B) 12 ,
C) 13,3
D) 15,21
E) 17,12

Answers:

1	2	1
1	3	1
1	2	1

1	2	0	1	3	1
2	1	4	2	2	2
1	0	1	0	1	3
1	2	1	0	2	4
2	5	3	1	2	2
2	1	3	1	6	3

Border handling - extend the input Input

- Reflection

1	1	2	0	1	3	
1	1	2	0	1	3	1
2	2	1	4	2	2	2
1	1	0	1	0	1	3
1	1	2	1	0	2	4
	2	5	3	1	2	2
	2	1	3	1	6	3

- Normally better than zero padding

What is the connection to deep learning?

https://se.mathworks.com/videos/introduction-to-deep-learning-what-are-convolutional-neural-networks--1489512765771.html

Banks of filters

- The part of the network that touches the image consists of a bank of filters
- Organised in a multi-level hierarchy
- The weights of the filters are adapted to the problem

Template Matching

- Template
- Skabelon på dansk
- Locates objects in images

Template Matching

- The correlation between the template and the input image is computed for each pixel

Template Matching

- The pixel with the highest value is found in the output image
- Here is the highest correlation

Template Matching

- This corresponds to the found pattern in the input image

Problematic Correlation

- Correlation matching has problem with light areas - why?

$$
g(x, y)=\sum_{j=-R}^{R} \sum_{i=-R}^{R} h(i, j) f(x+i, y+j) \text { Very High! }
$$

Normalised Cross Correlation

$$
\operatorname{NCC}(x, y)=\frac{\text { Correlation }}{\text { Length of image patch } \cdot \text { Length of template }}
$$

Template (h)

Output: Correlation image

Length of template

- Vector length
- Put all pixel values into a vector
- Compute the length of this vector
- Describes the intensity of the template
- Bright template has a large length
- Dark template has a small length

$$
\text { Length of template }=\sqrt{\sum_{j=-R}^{R} \sum_{i=-R}^{R} h(i, j) \cdot h(i, j)}
$$

Length of image patch

- Vector length based on pixel values in image patch
- Describes the intensity of the image patch

Template (h)

> Input (f) with patch

Normalised Cross Correlation

- The length of the image patch and the length of template normalises the correlation
- Since correlation is a dot product:
- Normalising a dot product results in the angle between vector f and h
- Normalised dot product

$$
\mathrm{NCC}(\mathrm{x}, \mathrm{y})=\cos \theta
$$

Normalised Cross Correlation

- NCC will be between
- 0 : No similarity between template and image patch
- 1 : Template and image patch are identical
$\operatorname{NCC}(\mathrm{x}, \mathrm{y})=\frac{\text { Correlation }}{\text { Length of image patch } \cdot \text { Length of template }}$

Template (h)

Quiz 9: Normalised cross correlation on image

A template match using normalised cross correlation is performed. What is the resulting value in the marked pixel?
A) 0.10
B) 0.33
C) 0.83
D) 0.62
E) 0.98

227	208	90	97	145	42	58	27			
245	62	212	145	120	154	233	245			
140	237	149	19	3	67	39	1			
35	89	140	14	86	167	211	198	66	232	37
38	50	234	135	41	176	137	208			
66	64	73	199	203	191	254	222	204	46	35
214	157	193	238	79	115	20	22			
65	121	192	33	135	21	113	102	110	67	222

Edges

- An edge is where there is a high change in gray level values
- Objects are often separated from the background by edges

Edges

- The profile as a function $f(d)$
- What value is high when there is an edge?
- The slope of f
- The slope of the tangent at d

Finite Difference

- Definition of slope

$$
f^{\prime}(d)=\lim _{h \rightarrow 0} \frac{f(d+h)-f(d)}{h}
$$

- Approximation

$$
f^{\prime}(d) \approx \frac{f(d+h)-f(d)}{h}
$$

■ Simpler approximation

$$
f^{\prime}(d) \approx f(d+1)-f(d)
$$

$$
\mathrm{h}=1
$$

Edges

Edges in 2D

- Changes in gray level values
- Image gradient
- Gradient is the 2D derivative of a 2D function $f(x, y)$
- Equal to the slope of the image
- A steep slope is equal to an edge

$$
\nabla f(x, y)=\vec{G}\left(g_{x}, g_{y}\right)
$$

2D Gradient

magnitude $=\sqrt{g_{x}^{2}+g_{y}^{2}}$

Edge filter kernel

- The Prewitt filter is a typical edge filter
- Output image has high values where there are edges

Prewitt filter (vertical)

Edge detection

- Edge filter
- Prewitt for example
- Find magnitude of 2D gradient
- Thresholding
- Separate edges from non-edges
- Output is binary image
- Edges are white

Lecture 4b - Morphology

0	0	1	1	1	0	0					
0	1	1	1	1	1	0					
1	1	1	1	1	1	1					
1	1	1	1	1	1	1					
1	1	1	1	1	1	1					
0	1	1	1	1	1	0					
0	0	1	1	1	0	0					

What can you also do after today?

- Describe the similarity between filtering and morphology
- Describe a structuring element
- Compute the dilation of a binary image
- Compute the erosion of a binary image
- Compute the opening of a binary image
- Compute the closing of a binary image
- Apply compound morphological operations to binary images
- Describe typical examples where morphology is suitable
- Remove unwanted elements from binary images using morphology
- Choose appropriate structuring elements and morphological operations based on image content

Morphology

- The science of form, shape and structure
- In biology: The form and structure of animals and plants

Mathematical morphology

The same theorem may be restated in another way. If $\mathcal{J} \mathrm{d}(\mathcal{B}) \neq \varnothing$ then
let B_{i} be a family of elements of \mathcal{B}. We have $\vee B_{i} \in \sim B$, and thus $\widetilde{\gamma}\left(\vee B_{i}\right)=$
$\vee B_{i}$. From the first relation above, it follows for any $\psi \in \mathcal{J} d(\mathcal{B})$, that
$\psi\left(\vee B_{i}\right)=\psi \widetilde{\gamma}\left(\vee B_{i}\right)=\widetilde{\varphi} \widetilde{\gamma}\left(\vee B_{i}\right)$.
But $\widetilde{\gamma}\left(\vee B_{i}\right)=\vee B_{i}$, so that
$\widetilde{\varphi}\left(\vee B_{i}\right)=\psi\left(\vee B_{i}\right) \in \mathcal{B}$.
In the same way, we also obtain
$\widetilde{\gamma} \widetilde{\varphi}\left(\wedge B_{i}\right)=\widetilde{\gamma}\left(\wedge B_{i}\right)=\psi\left(\wedge B_{i}\right) \in \mathcal{B}$
In other words, \mathcal{B} is a complete lattice with respect to the ordering on \mathcal{B} induced by \leq, i.e. any family B_{i} in \mathcal{B} has a smallest upper bound $\widetilde{\varphi}\left(\vee B_{i}\right) \mathcal{B}$ and a greatest lower bound $\widetilde{\gamma}\left(\wedge B_{i}\right) \in \mathcal{B}$.

Conversely, let us assume that \mathcal{B} is a complete lattice. Thus, for any $A \in \mathcal{L}$, the family $\{B: B \in \mathcal{B}, B \geq A\}$ has in \mathcal{B} a greatest lower bound, which is

Do not worry! We use a much less theoretical approach! approach!

$$
\widetilde{\gamma}(\wedge\{B: B \in \mathcal{B}, B \geq A\})=\widetilde{\gamma} \widetilde{\varphi}(A) \in \mathcal{B} .
$$

But this implies $\mathcal{B}_{\psi_{M}} \subseteq \mathcal{B}$ for the filter $\psi_{M}=\widetilde{\gamma} \widetilde{\varphi}$. Conversely, for any

- Developed in 1964
- Theoretical work done in Paris
- Used for classification of minerals in cut stone
- Initially used for binary images

Relevance?

- Point wise operations
- Filtering
- Thresholding
- Gives us objects that are separated by the background
- Morphology
- Manipulate and enhance binary objects

What can it be used for?

[9\% $\%$

- Remove noise
- Small objects
- Fill holes
- Isolate objects
- Customized to specific shapes

How does it work?

- Grayscale image
- Preprocessing
- Inversion
- Threshold => Binary image
- Morphology

Filtering and morphology

- Filtering

1	2	0	1	3	1
2	1	4	2	2	2
1	0	1	0	1	3
1	2	1	0	2	4
2	5	3	1	2	2
2	1	3	1	6	3

- Gray level images
- Kernel
- Moves it over the input image
- Creates a new output image

Filtering and morphology

0	1	0	
1	1	1	Disk
0	1	0	
1	1	1	
1	1	1	Box
1	1	1	

- Filtering
- Gray level images
- Kernel
- Moves it over the input image
- Creates a new output image
- Morphology
- Binary images
- Structuring element (SE)
- Moves the SE over the input image
- Creates a new binary output image

1D Morphology

Input image

1	0	0	0	1	1	1	0	1	1

Structuring Element (SE)

Output Image

1D Morphology : The hit operation

- If just one 1 in the SE match with the input
- output 1
- else

1D Morphology : The fit operation

- If all 1 in the SE match with the input
- output 1
- else

1D Morphology : Dilation

- Dilate: To make wider or larger
- Dansk : udvide
- Based on the hit operation

1D Dilation example


```
- If just one 1 in the SE match with the input
Hit
- output 1
- else
- output 0
```


Example for Dilation

Input image

Structuring Element

1	0	0	0	1	1	1	0	1	1

Output Image

	1	0							

Example for Dilation

Input image

Structuring Element

Output Image

Example for Dilation

Input image

Structuring Element

1	0	0	0	1	1	1	0	1	1

Output Image

	1	0	1	1					

Example for Dilation

Input image

Structuring Element

1	0	0	0	1	1	1	0	1	1

Output Image

	1	0	1	1	1				

Example for Dilation

Input image

Structuring Element

Example for Dilation

Input image

Structuring Element

1	0	0	0	1	1	1	0	1	1

Output Image

	1	0	1	1	1	1	1		

Example for Dilation

Input image

Structuring Element

1	0	0	0	1	1	1	0	1	1

Output Image

	1	0	1	1	1	1	1	1	

The object gets bigger and holes are filled!

1D Morphology : Erosion

\square Erode : To wear down (Waves eroded the shore)

- Dansk : tære, gnave
- Based on the fit operation

Example for Erosion

Quiz 10: 1D Erosion

> Input image
A) 01001100
B) 00101000
C) 00001000
D) 00100001
E) 01000100

Output Image

Example for Erosion

Input image

Structuring Element

Output Image

	0	0	0	0	1	0	0	0	

The object gets smaller

Structuring Element (Kernel)

0	1	0
1	1	1
0	1	0
Disk		

1	1	1
1	1	1
1	1	1
Box		

- Structuring Elements can have varying sizes
- Usually, element values are 0 or 1, but other values are possible (including none!)
- Structural Elements have an origin
- Empty spots in the Structuring

		1	1	1		
	1	1	1	1	1	
1	1	1	1	1	1	1
1	1	1	1	1	1	1
1	1	1	1	1	1	1
	1	1	1	1	1	
		1	1	1		

Elements are don't cares!

Structuring Element Origin

0	1	0
1	1	1
0	1	0

- The origin is not always the center of the SE

1	1	1
1	1	1
1	1	1

Special structuring elements

- Structuring elements can be customized to a specific problem

0	0	0	1	0	0	0
0	0	1	1	1	0	0
0	1	1	1	1	1	0
1	1	1	1	1	1	1
0	1	1	1	1	1	0
0	0	1	1	1	0	0
0	0	0	1	0	0	0

Diamond

Dilation on images - disk
Holes are closed

$$
g(x, y)=f(x, y) \oplus S E \quad \text { object is bigerer }
$$

Quiz 11: Dilation on image - box

$$
g(x, y)=f(x, y) \oplus S E
$$

Dilation - the effect of the SE

Dilation Example

- Round structuring element (disk)
- Creates round corners

0						
0	0	1	1	1	0	0
0	1	1	1	1	1	0
1	1	1	1	1	1	1
1	1	1	1	1	1	1
1	1	1	1	1	1	1
0	1	1	1	1	1	0
0	0	1	1	1	0	0

DTU Compute

Quiz 12: Threshold and dilation

> A) 14
> B) 17
> C) 6
> D) 3
> E) 12

Answer:

145	56	86	42	191
19	33	41	255	115
14	240	203	234	21
135	120	209	167	58
199	3	135	176	116

A threshold of 200 is applied to the image and the result is a binary image. Now a dilation is performed with the structuring element below. How many foreground pixels are there in the resulting image?

145	56	86	42	191
19	33	41	255	115
14	240	203	234	21
135	120	209	167	58
199	3	135	176	116

Erosion on images - disk

Quiz 13: Erosion on images - box

Erosion on images - box (square)

Erosion example

Counting Coins

- Counting these coins is difficult because they touch each other!
- Solution: Threshold and Erosion separates them!
- More on counting next time!

> 888\%

Compound operations

- Compound
- made of two or more separate parts or elements
- Combining Erosion and Dilation into more advanced operations
- Finding the outline
- Opening
- Isolate objects and remove small objects (better than Erosion)
- Closing
- Fill holes (better than Dilation)

Finding the outline

1. Dilate input image (object gets bigger)
2. Subtract input image from dilated image
3. The outline remains!

$$
g(x, y)=(f(x, y) \oplus S E)-f(x, y)
$$

Opening

- Motivation: Remove small objects BUT keep original size (and shape)
- Opening = Erosion + Dilation
- Use the same structuring element!
- Similar to erosion but less destructive

■ Math:

$$
g(x, y)=f(x, y) \circ S E=(f(x, y) \ominus S E) \oplus S E
$$

- Opening is idempotent: Repeated operations have no further effects!

$$
f(x, y) \circ S E=(f(x, y) \circ S E) \circ S E
$$

Opening

$$
g(x, y)=(f(x, y) \ominus S E) \oplus S E
$$

Original

Eroded
Dilated
Opening = erosion+dilation
\square

Opening Example

■ 9x3 and 3×9 Structuring Elements

Opening example

■ Size of structuring element should fit into the smallest object to keep

- Structuring Element: 11 pixel disc

Quiz 14: Compound operations on image

The compound morphological operation seen below is applied to the image. How many foreground pixels are there in the resulting image?
A) 3
B) 23
C) 11
D) 36
(E) 16

Answer:

SE2

$$
(\mathrm{I} \ominus \mathrm{SE} 1) \oplus \mathrm{SE} 2
$$

SE1 SE2

Closing

- Motivation: Fill holes BUT keep original size (and shape)
- Closing = Dilation + Erosion
- Use the same structuring element!
- Similar to Dilation but less destructive
- Math:

$$
g(x, y)=f(x, y) \bullet S E=(f(x, y) \oplus S E) \ominus S E
$$

- Closing is idempotent: Repeated operations have no further effects!

$$
f(x, y) \circ S E=(f(x, y) \circ S E) \circ S E
$$

Closing

$$
g(x, y)=(f(x, y) \oplus S E) \ominus S E
$$

Closing Example

- Closing operation with a 22 pixel disc
- Closes small holes

What did we learn today

Neighbourhood Processing

Morphology of binary images

Next week:
Blob Analysis and object classification

